Document made available under the Patent Cooperation Treaty (PCT) International application number: PCT/US2010/048438 International filing date: 10 September 2010 (10.09.2010) Document type: Certified copy of priority document Document details: Country/Office: US Number: 12/556,878 Filing date: 10 September 2009 (10.09.2009) Date of receipt at the International Bureau: 22 October 2010 (22.10.2010) Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a),(b) or (b-bis) TO ALL TO WHOM THUSE; PRESENTS SHALL COME; UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office September 23, 2010 THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE. APPLICATION NUMBER: 12/556,878 FILING DATE: September 10, 2009 RELATED PCT APPLICATION NUMBER: PCT/US10/48438 THE COUNTRY CODE AND NUMBER OF YOUR PRIORITY APPLICATION, TO BE USED FOR FILING ABROAD UNDER THE PARIS CONVENTION, IS *US12/556,878* Certified by Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office Jail J. Kalles # CERTIFICATE OF ELECTRONIC FILING I hereby certify that the below named documents are being transmitted electronically via the United States Patent and Trademark Office's Electronic Filing Service (EFS-Web) on this 10th day of September, 2009 Certificate of Electronic Filing (1 pg.) Specification + Title Page (27 pg.) Claims (4 pgs.) Abstract (1 pg.) Application Data Sheet (3 pgs.) Declaration (1 pg.) Christine Dickerson # **U.S. Patent Application** Attorney Docket No.: 29790-16 Title: # **SEPARATING COMPOSITIONS AND METHODS OF USE** ### **Inventors:** Robert C. Yeggy 5765 S. State Route 48 Suite 110-161 Maineville, Ohio 45039 Citizenship: USA Vito J. Altavilla 2183 Springer Avenue Cincinnati, Ohio 45208 Citizenship: USA Inventor: Yeggy, et al. **SEPARATING COMPOSITIONS AND METHODS OF USE** Related U.S. Application Data [0001] This application is a continuation in part application of U.S. Non- Provisional Application No. 11/868,031, filed October 5, 2007, which claims the benefit of priority from U.S. Provisional Application No. 60/828,501, filed on October 6, 2006. The entire disclosures of the earlier applications are hereby incorporated by reference. Background [0002] Oil sands, also known as "tar sands" and "bituminous sands," are a mixture of bitumen (tar), sand, and water. Bitumen is a heavy, viscous crude oil, having relatively high sulfur content. When properly separated from the oil sands, bitumen may be processed to synthetic crude oil suitable for use as a feedstock for the production of liquid motor fuels, heating oil, and petrochemicals. Oil sand fields exist throughout most of the world. Particularly significant deposits exist in Canada, including the Athabasca oil sands in Alberta, the United States, including the Utah oil sands, South America, including the Orinoco oil sands in Venezuela, and Africa, including the Nigerian oil sands. A majority of all of the known oil in the world is contained in oil sands. [0003] Bitumen is very difficult to separate from oil sands in an efficient and environmentally acceptable manner. Current efforts to separate bitumen from oil sands typically yield only about 85-92% of the available bitumen. Moreover, current efforts to separate bitumen from oil sands include the creation of emulsions, or "froth," during processing, requiring the use of environmentally harmful organic solvents such as naphtha to "crack" the emulsions and allow for further processing. In addition, the bitumen that remains in the sand (and other particulate - 2 - Inventor: Yeggy, et al. matter, such as clay) component of the oil sands contributes to the creation of a heavy sludge, often referred to as "tailings." Current practice for the disposal of the tailings, which are comprised of unrecovered bitumen, sand (and other particulate matter), and water is to pump the tailings into huge tailings ponds, where the sand and other particulate matter slowly settle and stratify over the course of several years. Summary [0004] The present exemplary embodiments describe compositions and methods for separating bitumen from oil sands in an efficient and environmentally acceptable manner, and for recovering residual bitumen from existing tailings ponds. [0005]According to one aspect of the present embodiments, a composition is provided, comprising a separating composition comprising a hydrotropic agent and a dispersant having flocculating characteristics, wherein the separating composition has a pH of greater than 7.5. [0006]According to another aspect of the present embodiments, a separating composition is provided, comprising from about 0.1% to about 4.0% by weight of a hydrotropic agent; and from about 0.25% to about 4.5% by weight of a dispersant having flocculating characteristics. [0007] According to another aspect of the present embodiments, a separating composition for separating bitumen from oil sands or tailings is provided, comprising from about 0.1% to about 4.0% by weight of an aromatic phosphate ester having the formula: - 3 - Inventor: Yeggy, et al. $$R^1$$ O D PO_3K_2 wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n=1 to 8; from about 0.001% to about 4.5% by weight of sodium pyrophosphate; from about 0.001% to about 4.5% by weight of tetrapotassium pyrophosphate; from about 2% to about 9.5% by weight of sodium hydroxide; and from about 1.7% to about 8.6% by weight of phosphoric acid, wherein the separating composition has a pH of from about 7.0 to about 8.5. ### **Detailed Description** [0008] As used herein, the term "about" means "approximately," and, in any event, may indicate as much as a 10% deviation from the number being modified. [0009] As used herein, "essentially free" means an amount less than about 0.1%. [0010] In one embodiment, a composition is provided, comprising a separating composition comprising a hydrotropic agent, and a dispersant having flocculating characteristics, wherein the separating composition has a pH of greater than 7.5. In one embodiment, the composition further comprises a wetting agent. Suitable wetting agents may include, for example, one or more of DYNOLTM 607 Surfactant (Air Products and Chemicals, Inc.), SURFYNOL® 420 (Air Products and Chemicals, Inc.), SURFYNOL® 440 (Air Products and Chemicals, Inc.), SURFYNOL® 465 (Air Products and Chemicals, Inc.), SURFYNOL® 485 (Air Products and Chemicals, Inc.), DYNOLTM 604 Surfactant (Air Products and Chemicals, Inc.), TOMADOL® 91-2.5 (Tomah Products, Inc.), Inventor: Yeggy, et al. TOMADOL® 91-6 (Tomah Products, Inc.), TOMADOL® 91-8 (Tomah Products, Inc.), TOMADOL® 1-3 (Tomah Products, Inc.), TOMADOL® 1-5 (Tomah Products, Inc.), TOMADOL® 1-7 (Tomah Products, Inc.), TOMADOL® 1-73B (Tomah Products, Inc.), TOMADOL® 1-9 (Tomah Products, Inc.), TOMADOL® 23-1 (Tomah Products, Inc.), TOMADOL® 23-3 (Tomah Products, Inc.), TOMADOL® 23-5 (Tomah Products, Inc.), TOMADOL® 23-6.5 (Tomah Products, Inc.), TOMADOL® 25-3 (Tomah Products, Inc.), TOMADOL® 25-7 (Tomah Products, Inc.), TOMADOL® 25-9 (Tomah Products, Inc.), TOMADOL® 25-12 (Tomah Products, Inc.), TOMADOL® 45-7 (Tomah Products, Inc.), TOMADOL® 45-13 (Tomah Products, Inc.), TRITONTM X-207 Surfactant (Dow Chemical Company), TRITONTM CA Surfactant (Dow Chemical Company), NOVECTM Fluorosurfactant FC-4434 (3M Company), POLYFOXTM AT-1118B (Omnova Solutions, Inc.), ZONYL® 210 (Dupont), ZONYL® 225 (Dupont), ZONYL® 321 (Dupont), ZONYL® 8740 (Dupont), ZONYL® 8834L (Dupont), ZONYL® 8857A (Dupont), ZONYL® 8952 (Dupont), ZONYL® 9027 (Dupont), ZONYL® 9338 (Dupont), ZONYL® 9360 (Dupont), ZONYL® 9361 (Dupont), ZONYL® 9582 (Dupont), ZONYL® 9671 (Dupont), ZONYL® FS-300 (Dupont), ZONYL® FS-500 (Dupont), ZONYL® FS-610 (Dupont), ZONYL® 1O33D (Dupont), ZONYL® FSE (DuPont), ZONYL® FSK (DuPont), ZONYL® FSH (DuPont), ZONYL® FSJ (DuPont), ZONYL® FSA (DuPont), ZONYL® FSN-100 (DuPont), LUTENSOL® OP 30-70% (BASF), LUTENSOL® A 12 N (BASF), LUTENSOL® A 3 N (BASF), LUTENSOL® A 65 N (BASF), LUTENSOL® A 9 N (BASF), LUTENSOL® AO 3 (BASF), LUTENSOL® AO 4 (BASF), LUTENSOL® AO 8 (BASF), LUTENSOL® AT 25 (BASF), LUTENSOL® AT 55 PRILL SURFACTANT (BASF), LUTENSOL® CF 10 90 SURFACTANT (BASF), LUTENSOL® DNP 10 (BASF), LUTENSOL® NP 4 (BASF), LUTENSOL® NP 10 (BASF), LUTENSOL® Inventor: Yeggy, et al. NP-100 PASTILLE (BASF), LUTENSOL® NP-6 (BASF), LUTENSOL® NP-70-70% (BASF), LUTENSOL® NP-50 (BASF), LUTENSOL® NP 9 (BASF), LUTENSOL® ON 40 SURFACTANT (BASF), LUTENSOL® ON 60 (BASF), LUTENSOL® OP-10 (BASF), LUTENSOL® TDA 10 SURFACTANT (BASF), LUTENSOL® TDA 3 SURFACTANT (BASF), LUTENSOL® TDA 6 SURFACTANT (BASF), LUTENSOL® TDA 9 SURFACTANT (BASF), LUTENSOL® XL 69 (BASF), LUTENSOL® XL 100 (BASF), LUTENSOL® XL 140 (BASF), LUTENSOL® XL 40 (BASF), LUTENSOL® XL 50 (BASF), LUTENSOL® XL 60 (BASF), LUTENSOL® XL 70 (BASF), LUTENSOL® XL 79 (BASF), LUTENSOL® XL 80 (BASF), LUTENSOL® XL 89 (BASF), LUTENSOL® XL 90 (BASF), LUTENSOL® XL 99 (BASF), LUTENSOL® XP 100 (BASF), LUTENSOL® XP 140 (BASF), LUTENSOL® XP 30 (BASF), LUTENSOL® XP 40 (BASF), LUTENSOL® XP 50 (BASF), LUTENSOL® XP 60 (BASF), LUTENSOL® XP 69 (BASF), LUTENSOL® XP 70 (BASF), LUTENSOL® XP 79 (BASF), LUTENSOL® XP 80 (BASF), LUTENSOL® XP 89 (BASF), LUTENSOL® XP 90 (BASF), LUTENSOL® XP 99 (BASF), MACOL® 16 SURFACTANT (BASF), MACOL® CSA 20 POLYETHER (BASF), MACOL® LA 12 SURFACTANT (BASF), MACOL® LA 4 SURFACTANT (BASF), MACOL® LF 110 SURFACTANT (BASF), MACOL® LF 125A SURFACTANT (BASF), MAZON® 1651 SURFACTANT (BASF), MAZOX® LDA Lauramine OXIDE (BASF), PLURAFAC® AO8A Surfactant (BASF), PLURAFAC® B-26 Surfactant (BASF), PLURAFAC® B25-5 Surfactant (BASF), PLURAFAC® D25 Surfactant (BASF), PLURAFAC® LF 1200 Surfactant (BASF), PLURAFAC® LF 2210 Surfactant (BASF), PLURAFAC® LF 4030 Surfactant
(BASF), PLURAFAC® LF 7000 Surfactant (BASF), PLURAFAC® RA-20 Surfactant (BASF), PLURAFAC® RA 30 Surfactant (BASF), PLURAFAC® RA 40 Surfactant (BASF), Inventor: Yeggy, et al. PLURAFAC® RCS 43 Surfactant (BASF), PLURAFAC® RCS 48 Surfactant (BASF), PLURAFAC® S205LF Surfactant (BASF), PLURAFAC® S305LF Surfactant (BASF), PLURAFAC® S505LF Surfactant (BASF), PLURAFAC® SL 62 Surfactant (BASF), PLURAFAC® SL 92 Surfactant (BASF), PLURAFAC® SL-22 Surfactant (BASF), PLURAFAC® SL-42 Surfactant (BASF), PLURAFAC® SLF 37 Surfactant (BASF), PLURAFAC® SLF-18 Surfactant (BASF), PLURAFAC® SLF-18B-45 Surfactant (BASF), PLURAFAC® L1220 Surfactant (BASF), PLURONIC® 10R5 SURFACTANT (BASF), PLURONIC® 17R2 (BASF), PLURONIC® 17R4 (BASF), PLURONIC® 25R2 (BASF), PLURONIC® 25R4 (BASF), PLURONIC® 31R1 (BASF), PLURONIC® F108 CAST SOLID SURFACTANT (BASF), PLURONIC® F108 NF CAST SOLID SURFACTANT (BASF), PLURONIC® F108 NF PRILL SURFACTANT (BASF), PLURONIC® F108 PASTILLE SURFACTANT (BASF), PLURONIC® F127 CAST SOLID SURFACTANT (BASF), PLURONIC® F127 NF PRILL Surfactant (BASF), PLURONIC® F127NF 500BHT CAST SOLID SURFACTANT (BASF), PLURONIC® F38 CAST SOLID SURFACTANT (BASF), PLURONIC® PASTILLE (BASF), PLURONIC® F68 LF PASTILLE SURFACTANT (BASF), PLURONIC® F68 CAST SOLID SURFACTANT (BASF). PLURONIC® F77 CAST SOLID SURFACTANT (BASF), PLURONIC® F-77 MICRO PASTILLE SURFACTANT (BASF), PLURONIC® F87 CAST SOLID SURFACTANT (BASF), PLURONIC® F88 CAST SOLID SURFACTANT (BASF), PLURONIC® F98 CAST SOLID SURFACTANT (BASF), PLURONIC® L10 SURFACTANT (BASF), PLURONIC® L101 SURFACTANT (BASF), PLURONIC® L121 SURFACTANT (BASF), PLURONIC® L31 SURFACTANT (BASF), PLURONIC® L92 SURFACTANT (BASF), PLURONIC® N-3 SURFACTANT (BASF), PLURONIC® P103 SURFACTANT (BASF), PLURONIC® P105 SURFACTANT (BASF), Inventor: Yeggy, et al. PLURONIC® P123 SURFACTANT (BASF), PLURONIC® P65 SURFACTANT (BASF), PLURONIC® P84 SURFACTANT (BASF), PLURONIC® P85 SURFACTANT (BASF), TETRONIC® 1107 micro-PASTILLE SURFACTANT (BASF), TETRONIC® 1107 SURFACTANT (BASF), TETRONIC® 1301 SURFACTANT (BASF), TETRONIC® 1304 SURFACTANT (BASF), TETRONIC® 1307 SURFACTANT (BASF), TETRONIC® 1307 SURFACTANT PASTILLE (BASF), TETRONIC® 150R1 SURFACTANT (BASF), TETRONIC® 304 SURFACTANT (BASF), TETRONIC® 701 SURFACTANT (BASF), TETRONIC® 901 SURFACTANT (BASF), TETRONIC® 904 SURFACTANT (BASF), TETRONIC® 908 CAST SOLID SURFACTANT (BASF), and TETRONIC® 908 PASTILLE SURFACTANT (BASF), and mixtures thereof. In one specific embodiment, the wetting agent may include one or more ethoxylated acetylenic alcohols, such as, for example, 2,5,8,11-tetramethyl-6-dodecyn-5,8-diol ethoxylate. In another embodiment, the composition excludes a wetting agent altogether. In one embodiment, the exclusion of a wetting allows for an increased surface tension in the composition. Lower surface tensions may encourage the formation of emulsions that interfere with the flocculation of solids out of the composition when applied to oil sands. Lower surface tension further may interfere with the transference of mechanical energy within the system. [0013] Suitable hydrotropic agents may include, for example, one or more of TRITON® H-66 (Dow Chemical Company), TRITON® H-55 (Dow Chemical Company), TRITON® QS-44 (Dow Chemical Company), TRITON® XQS-20 (Dow Chemical Company), TRITON® X-15 (Union Carbide Corporation), TRITON® X-35 (Union Carbide Corporation), Inventor: Yeggy, et al. TRITON® X-45 (Union Carbide Corporation), TRITON® X-114 (Union Carbide Corporation), TRITON® X-100 (Union Carbide Corporation), TRITON® X-165 (70%) active (Union Carbide Corporation), TRITON® X-305 (70%) active (Union Carbide Corporation), TRITON® X-405 (70%) active (Union Carbide Corporation), TRITON® BG Nonionic Surfactant (Union Carbide Corporation), TERGITOL® MinFoam 1X (Dow Chemical Company), TERGITOL® L-61 (Dow Chemical Company), TERGITOL® L-64 (Dow Chemical Company), TERGITOL® L-81 (Dow Chemical Company), TERGITOL® L-101 (Dow Chemical Company), TERGITOL® NP-4 (Dow Chemical Company), TERGITOL® NP-6 (Dow Chemical Company), TERGITOL® NP-7 (Dow Chemical Company), TERGITOL® NP-8 (Dow Chemical Company), TERGITOL® NP-9 (Dow Chemical Company), TERGITOL® NP-11 (Dow Chemical Company), TERGITOL® NP-12 (Dow Chemical Company), TERGITOL® NP-13 (Dow Chemical Company), TERGITOL® NP-15 (Dow Chemical Company), TERGITOL® NP-30 (Dow Chemical Company), TERGITOL® NP-40 (Dow Chemical Company), SURFYNOL® 420 (Air Products and Chemicals, Inc.), SURFYNOL® 440 (Air Products and Chemicals, Inc.), SURFYNOL® 465 (Air Products and Chemicals, Inc.), SURFYNOL® 485 (Air Products and Chemicals, Inc.), MAPHOS® 58 ESTER (BASF), MAPHOS® 60 A Surfactant (BASF), MAPHOS® 66 H ESTER (BASF), MAPHOS® 8135 ESTER (BASF), MAPHOS® M-60 ESTER (BASF), 6660 K Hydrotroping Phosphate Ester Salt (Burlington Chemical), Burofac 7580 Aromatic Phosphate Ester (Burlington Chemical), and Burofac 9125 (Burlington Chemical), and mixtures thereof. [0014] In one specific embodiment, the hydrotropic agent may be one or more aromatic phosphate esters, such as, for example, an aromatic phosphate ester having the formula: Inventor: Yeggy, et al. $$R^1$$ O D PO_3K_2 wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n = 1 to 8. [0015] Suitable dispersants having flocculating characteristics may include, for example, one or more of sodium acid pyrophosphate, tetrapotassium pyrophosphate, monosodium phosphate (H₆NaO₆P), monoammonium phosphate ((NH₄)PO₄), sodium acid phosphate, trisodium phosphate, sodium tripolyphosphate, sodium tripolyphosphate, sodium triphosphate, sodium triphosphate, potassium triphosphate, tetraborate potassium tripolyphosphate, potassium phosphate - monobasic, potassium phosphate - dibasic, monopotassium phosphate, and tripotassium phosphate, and mixtures thereof. In one specific embodiment, the dispersant having flocculating characteristics may include one or more pyrophosphate salts, including, for example, one or more of sodium acid pyrophosphate and tetrapotassium pyrophosphate. [0016] In one embodiment, the hydrotropic agent may be present in the amount of from about 0.1% to about 4.0% by weight of the separating composition. The dispersant having flocculating characteristics may be present in the amount of from about 0.25% to about 4.5% by weight of the separating composition. In one embodiment, the separating composition may further comprise a strong base, such as, for example, hydroxides of alkali metals and alkaline earth metals, such as, for example, NaOH, KOH, Ba(OH)₂, CsOH, SrOH, Ca(OH)₂, LiOH, RbOH, NaH, LDA, and NaNH₂. As used herein, a "strong base" is a chemical compound having a pH of greater than Inventor: Yeggy, et al. about 13. The strong base may be present in the amount of from about 2% to about 9.5% by weight of the separating composition. In one embodiment, the separating composition may further comprise a heavy acid, such as, for example, phosphoric acid, nitric acid, sulfuric acid, hydronic acid, hydrobromic acid, perchloric acid, fluoromatic acid, magic acid (FSO₃HSbF₅), carborane super acid [H(CHB₁₁Cl₁₁)], triflic acid, ethanoic acid, and acetylsalicylic acid. As used herein, a "heavy" acid is an acid having a specific gravity greater than about 1.5. The heavy acid may be present in the amount of from about 1.7% to about 8.6% by weight of the separating composition. [0019] In one embodiment, the pH of the separating composition may be greater than 7.5. The pH of the separating composition may also be from about 7.0 to about 8.5. The pH of the separating composition may also be from about 7.6 to about 7.8. [0020] In another embodiment, the composition may be essentially free of organic solvent. As used herein, the term "organic solvent" refers to solvents that are organic compounds and contain carbon atoms such as, for example, naphtha, benzene, and other hydrocarbon solvents. [0021] In addition to the separating composition, the composition may also comprise hydrocarbon containing materials, such as oil sands, tailings, sludge, and the like. The ratio of the separating composition to the hydrocarbon containing materials may be from about 1:100 to about 100:1, from about 1:10 to about 10:1, from about 2:3 to about 3:2, or about 1:1. [0022] In yet another embodiment, a separating composition is provided, comprising from about 0.1% to about 4.0% by weight of a hydrotropic agent; and from about Inventor: Yeggy, et al. 0.25% to about 4.5% by weight of a dispersant having flocculating characteristics. The separating composition may have a pH of greater than 7.5; from about 7.0 to about 8.5; or from about 7.6 to about 7.8. The hydrotropic agent may be, for example, MAPHOS® 66H aromatic phosphate ester. The dispersant having flocculating characteristics may be, for example, one or more of sodium acid pyrophosphate and tetrapotassium pyrophosphate. [0023] The separating composition may further comprise a strong base, which may be, for example, sodium hydroxide. The strong base may be present in the amount of from about 2% to about 9.5% by weight of the separating composition. The separating composition may further comprise a heavy acid, which may be, for example, phosphoric acid. The heavy acid may be present in the amount of from about 1.7% to about 8.6% by weight of the separating composition. The separating composition may also be essentially free or completely free of organic solvent. [0024] In one embodiment, a separating composition for separating bitumen from oil sands or tailings is provided, comprising from about 0.1% to about 4.0% by weight of an aromatic phosphate ester having the formula: $$R^1$$ O n PO_3K_2 wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n=1 to 8; from about 0% to about 4.5% by weight of sodium pyrophosphate; from about 0% to about 4.5% by weight of tetrapotassium pyrophosphate; from about 2.0% to about 9.5% by weight of sodium hydroxide; and from about 1.7% to about 8.6% by weight of phosphoric acid. The separating composition
Inventor: Yeggy, et al. may have a pH of from about 7.0 to about 8.5. The separating composition may also be essentially free of organic solvent. [0025] In one embodiment, a method for separating bitumen from oil sands is provided, comprising contacting a separating composition comprising a hydrotropic agent and a dispersant having flocculating characteristics with oil sands comprising bitumen and sand; heating the separating composition and the oil sands; agitating the separating composition and the oil sands; and recovering the bitumen and sand as separate products. The pH of the separating composition may be greater than 7.5; from about 7.0 to about 8.5; or from about 7.6 to about 7.8. [0026] In one embodiment, the separating composition used in the exemplary method may be comprised of from about 0.1% to about 4.0% by weight of a hydrotropic agent; and from about 0.25% to about 4.5% by weight of a dispersant having flocculating characteristics. [0027] In another embodiment, the separating composition used in the exemplary method may be comprised of from about 0.1% to about 4.0% by weight of an aromatic phosphate ester having the formula: $$\mathsf{R}^1 \qquad \qquad \mathsf{O} \\ \mathsf{I}_{\mathsf{n}} \mathsf{PO}_3\mathsf{K}_2$$ wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n = 1 to 8; from about 0% to about 4.5% by weight of sodium pyrophosphate; from about 0% to about 4.5% by weight of Inventor: Yeggy, et al. tetrapotassium pyrophosphate; from about 2% to about 9.5% by weight of sodium hydroxide; and from about 1.7% to about 8.6% by weight of phosphoric acid. [0028] With respect to the process conditions under which the exemplary method may be carried out, the separating composition and the oil sands may be heated to greater than 25°C; from about 32°C to about 72°C; or from about 54°C to about 60°C. Any source of heat within the ambit of those skilled in the art may be used. Similarly, any device capable of providing sufficient agitation may be used to agitate the separating composition and the oil sands, including, for example, a high shear mixer, high speed attritor, high speed dispersers, fluidized beds, and the like, or any other device capable of providing sufficient agitation within the ambit of those skilled in the art. [0029] In one embodiment, the ratio of the separating composition to the oil sands may be from about 2:3 to about 3:2. In another embodiment, the ratio of the separating composition to the oil sands may be about 1:1. [0030] The recovered bitumen may be essentially emulsion-free. The exemplary method may be performed without the addition of organic solvent. In some circumstances, it may prove desirable to subject the separated, recovered bitumen to a second or subsequent aliquot of separating composition. In such a case, the exemplary method further comprises contacting the separated, recovered bitumen with a second or subsequent aliquot of fresh separating composition; heating the fresh separating composition and the bitumen; agitating the fresh separating composition and the recovered bitumen; and recovering the resulting bitumen. Such a "rinse" cycle may be repeated until the bitumen is essentially free of any sand or other particulate matter. Inventor: Yeggy, et al. [0032] In another embodiment, the separating composition may be recyclable. Thus, the exemplary method further comprises recovering the separating composition; contacting the recovered separating composition with a second or subsequent aliquot of oil sands comprising bitumen and sand; heating the recovered separating composition and the second or subsequent aliquot of oil sands; agitating the recovered separating composition and the second or subsequent aliquot of oil sands; and recovering the bitumen and sand as separate products. In another embodiment, a method is disclosed for processing existing tailings, both to salvage remaining bitumen and to allow for redeposit of the essentially bitumen-free sand. The method may comprise contacting a separating composition comprising a hydrotropic agent and a dispersant having flocculating characteristics with tailings comprising bitumen and sand; heating the separating composition and the tailings; agitating the separating composition and the tailings; and recovering the bitumen and sand as separate products. The pH of the separating composition may be greater than 7.5; from about 7.0 to about 8.5; or from about 7.6 to about 7.8. [0034] In one embodiment, the separating composition used in the exemplary method for processing existing tailings may be comprised of from about 0.1% to about 4.0% by weight of a hydrotropic agent; and from about 0.25% to about 4.5% by weight of a dispersant having flocculating characteristics. [0035] In another embodiment, the separating composition used in the exemplary method for processing existing tailings may be comprised of from about 0.1% to about 4.0% by weight of an aromatic phosphate ester having the formula: Inventor: Yeggy, et al. $$R^1$$ O n PO_3K_2 wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n = 1 to 8; from about 0% to about 4.5% by weight of sodium pyrophosphate; from about 0% to about 4.5% by weight of tetrapotassium pyrophosphate; from about 2% to about 9.5% by weight of sodium hydroxide; and from about 1.7% to about 8.6% by weight of phosphoric acid. [0036] With respect to the process conditions under which the exemplary method for processing existing tailings may be carried out, the separating composition and the tailings may be heated to greater than 25°C; from about 32°C to about 72°C; or from about 54°C to about 60°C. Any source of heat within the ambit of those skilled in the art may be used. Similarly, any device capable of providing sufficient agitation may be used to agitate the separating composition and the tailings, including, for example, a high shear mixer, high speed attritor, high speed dispersers, fluidized beds, and the like, or any other device capable of providing sufficient agitation within the ambit of those skilled in the art. [0037] In one embodiment, the ratio of the separating composition to the tailings may be from about 2:3 to about 3:2. In another embodiment, ratio of the separating composition to the tailings may be about 1:1. [0038] The recovered bitumen may be essentially emulsion-free. The exemplary method may be performed without the addition of organic solvent. [0039] In some circumstances, it may prove desirable to subject the separated, recovered bitumen from the tailings to a second or subsequent aliquot of separating composition. Inventor: Yeggy, et al. In such a case, the exemplary method further comprises contacting the separated, recovered bitumen with a second or subsequent aliquot of fresh separating composition; heating the fresh separating composition and the bitumen; agitating the fresh separating composition and the recovered bitumen; and recovering the resulting bitumen. Such a "rinse" cycle may be repeated until the bitumen is essentially free of any sand or other particulate matter. [0040] In another embodiment, the separating composition may be recyclable. Thus, the exemplary method for processing existing tailings would further comprise recovering the separating composition; contacting the recovered separating composition with a second or subsequent aliquot of tailings comprising bitumen and sand; heating the recovered separating composition and the second or subsequent aliquot of tailings; agitating the recovered separating composition and the second or subsequent aliquot of tailings; and recovering the bitumen and sand as separate products. The present embodiments have been described mainly in the context of lab-scale results. However, it should be appreciated that the results described herein are meant to embody the entire process by which oil sands are obtained, the extraction of bitumen from the oil sands, and the further processing of the extracted bitumen. By way of example, mining shovels dig oil sand ore and load it into trucks or other transportation means. The trucks take the oil sands to crushers where the oil sands are broken down in size. The broken down oil sands are added to a mixing tank and contacted with the separating composition as described herein. The separated bitumen is augered and pumped to storage, and then further refined to produce synthetic crude oil suitable for use as a feedstock for the production of liquid motor fuels, heating oil, and petrochemicals. Inventor: Yeggy, et al. [0042] The following examples are provided to illustrate various embodiments and shall not be considered as limiting in scope. [0043] EXAMPLE 1 – Separation of Bitumen from Athabasca Oil Sands [0044] 300 g of the following separating composition was prepared and placed in a 1 L beaker: # Composition 1 | 270.84 g | H ₂ O | |----------|----------------------------------| | 10.8 g | Phosphoric acid 75% | | 1.20 g | Sodium acid pyrophosphate | | 13.44 g | Caustic soda 50% | | 3.12 g | Tetrapotassium pyrophosphate 60% | | 0.60 g | MAPHOS® 66 H ESTER | [0045] The beaker containing Composition 1 was charged with 300 g of Athabasca oil sands. The resultant slurry was heated to between 54°C and 60°C. A high shear lab mixer was lowered into the beaker and the slurry was stirred at 3500 rpm for 3 minutes. The mixer was removed from the beaker. Over the course of the next 5-30 minutes, complete phase separation occurred within the beaker. Four separate, distinct phases were observed. The top, first layer Inventor: Yeggy, et al. 1 L beaker: contained bitumen. The second layer contained the separating composition. The third layer contained clay. The bottom, fourth layer contained sand and other particulate matter. The beaker contents were allowed to cool, at which time the bitumen was removed from the beaker by use of a spoon (although other physical separation means such as decanting or the use of a syringe or other suction device
could also be utilized. The bitumen was determined to be greater than 99% free of contaminants, including sand and clay. Approximately 45 g of bitumen was recovered, representing greater than 99% of all of the available bitumen in the sample of oil sands. [0047] The sand was also recovered and determined to be greater than 99% free of bitumen. The sand was placed in a drying oven at 72°C for 8 hours and, after cooling to room temperature, was able to be sifted through a 20-25 mesh sieve. [0048] To further quantify the amount of bitumen remaining in the sand, 255 g of the dried sand was placed in a beaker. 255 g of toluene was added to the sand. The resultant slurry was agitated, then allowed to settle. The toluene was then decanted from the sand. The decanted toluene was visually inspected and found to be clear. The sand was dried again at 72°C for 8 hours to evaporate any remaining toluene. Thereafter, the sand was weighed, and 255 g of sand remained. [0049] EXAMPLE 2 – Separation of Bitumen from Utah Oil Sands [0050] 300 g of the following separating composition was prepared and placed in a ### Composition 2 Inventor: Yeggy, et al. | 263.55 g | H ₂ O | |----------|----------------------------------| | 13.55 g | Phosphoric acid 75% | | 1.50 g | Sodium acid pyrophosphate | | 16.80 g | Caustic soda 50% | | 3.90 g | Tetrapotassium pyrophosphate 60% | | 0.75 g | MAPHOS® 66 H ESTER | [0051] The beaker containing Composition 2 was charged with 300 g of Utah oil sands. The resultant slurry was heated to between 54°C and 60°C. A high shear lab mixer was lowered into the beaker and the slurry was stirred at 3500 rpm for 3 minutes. The mixer was removed from the beaker. Over the course of the next 5-30 minutes, complete phase separation occurred within the beaker. Four separate, distinct phases were observed. The top, first layer contained bitumen. The second layer contained the separating composition. The third layer contained clay. The bottom, fourth layer contained sand and other particulate matter. [0052] The beaker contents were allowed to cool, at which time the bitumen was removed from the beaker by use of a spoon (although other physical separation means such as decanting or the use of a syringe or other suction device could also be utilized. The bitumen was determined to be greater than 99% free of contaminants, including sand and clay. Inventor: Yeggy, et al. Approximately 40 g of bitumen was recovered, representing greater than 99% of the available bitumen in the sample of oil sands. [0053] The sand was also recovered and determined to be greater than 99% free of bitumen. The sand was placed in a drying oven at 72°C for 8 hours and, after cooling to room temperature, was able to be sifted through a 20-25 mesh sieve. [0054] To further quantify the amount of bitumen remaining in the sand, 266 g of the dried sand was placed in a beaker. 266 g of toluene was added to the sand. The resultant slurry was agitated, then allowed to settle. The toluene was then decanted from the sand. The decanted toluene was visually inspected and found to be clear. The sand was dried again at 72°C for 8 hours to evaporate any remaining toluene. Thereafter, the sand was weighed, and 266 g of sand remained. # [0055] EXAMPLE 3 – PREPARATION OF SEPARATING COMPOSITION USING RIVER WATER [0056] River water from the Athabasca River located in northern Alberta province, Canada ("River Water") was provided from Canada. 800 g of separating composition was made using the River Water and according to a standard formula (provided below in Table 1). 210 g of the separating composition was mixed with 90 g of Canadian Oil Sands (from the Athabasca region in northern Alberta province, Canada). Prior to mixing with the Canadian Oil Sands, the pH of the separating composition was adjusted to 7.76 using phosphoric acid. [0057] The mixture of the separating composition and Canadian Oil Sands was placed into a Mason jar. The samples were heated to 140°F (about 61°C) using a microwave oven. After heating, in order to disperse the mixture, a 10,000 rpm high speed disperser with 1" Inventor: Yeggy, et al. blade was utilized. A Premier Mill, Series 2000, Model 2000, 110 V, 1 horsepower, 12 amp bench top disperser was utilized as the high speed disperser. The disperser was utilized for approximately 3 minutes. Thereafter, as the sample sat in place the constituents settled and distinct layers began to form. Within a half hour three distinct layers had formed with bitumen in the top layer, the used separating composition in the second layer, and solids (*e.g.*, sand and clay) in the third layer. The result achieved in terms of the separating into three distinct layers appeared to be almost exactly as a control (made using Deionized Water) indicating that the River Water would be acceptable for use in preparing the separating composition with no need for pre-treatment. [0058] After the Mason Jar contents had cooled and the three distinct layers had formed (approximately 1 hour), the bitumen was removed from the Mason Jar by use of a spoon (although other physical separation means such as decanting or the use of a syringe or other suction device could also be utilized. The bitumen was determined to be greater than 99% free of contaminants, including sand and clay. Approximately 9g of bitumen was recovered, representing greater than 99% of all of the available bitumen in the sample of Canadian Oil Sands. | Amount (grams) | Ingredient | |----------------|------------------------------| | 184 | Water | | 9.45 | Phosphoric acid (75%) | | 1.05 | Sodium acid pyrophosphate | | 11.7 | Caustic soda (50%) | | 2.73 | Tetrapotassium pyrophosphate | Inventor: Yeggy, et al. | | (60%) | |------|-----------------------| | 0.52 | MAPHOS® 66 H
ESTER | [0059] EXAMPLE 4 – PREPARATION OF SEPARATING COMPOSITION ## **WITH PROCESS WATER** [0060] Process water (or recirculation water) utilized in the processing of Athabasca oil sands was provided from Canada ("Process Water"). The Process Water was brown-colored and appeared to contain clay suspended in an emulsion. 800 g of separating composition was made using the Process Water according to the standard formula provided above in Table 1. The separating composition was allowed to sit for a hour during which time all or substantially all of the clay in the Process Water flocculated out and settled. After flocculation and settling had occurred, the separating solution was decanted away from the flocculated clay. Thereafter, the separating composition was adjusted to a pH of 7.76 (using phosphoric acid) and then 210 g of the separating composition was mixed with 90 g of Canadian Oil Sands (from the Athabasca region in northern Alberta province, Canada). [0061] The mixture of the separating composition and the Canadian Oil Sands was placed into a Mason jar. The samples were heated to 140°C using a microwave oven. After heating, in order to disperse the mixture, a 10,000 rpm high speed disperser with 1" blade was utilized. A Premier Mill, Series 2000, Model 2000, 110 V, 1 horsepower, 12 amp bench top disperser was utilized as the high speed disperser. The disperser was utilized for approximately 3 minutes. Thereafter, as the sample sat in place the constituents settled and distinct layers began to form. Within a half hour three distinct layers had formed with bitumen in the top layer, the used separating composition in the second layer, and solids (*e.g.*, sand and clay) in the third Inventor: Yeggy, et al. layer. The reaction was almost exactly as the control indicating that the Process Water would be acceptable for use in preparing the separating composition with no need for pre-treatment. [0062] After the Mason Jar contents had cooled and the three distinct layers had formed (approximately 1 hour), the bitumen was removed from the Mason Jar by use of a spoon (although other physical separation means such as decanting or the use of a syringe or other suction device could also be utilized. The bitumen was determined to be greater than 99% free of contaminants, including sand and clay. Approximately 9g of bitumen was recovered, representing greater than 99% of all of the available bitumen in the sample of Canadian Oil Sands. # [0063] EXAMPLE 5 – SEPARATION OF BITUMEN TAILINGS PONDS MFT (MATURE FINE TAILINGS 30% SAMPLE. [0064] 800 g of separating composition was made with River Water, as provided above in Example 4. A sample of mature fine tailings from a tailings pond in the Athabasca region of Northern Alberta province, Canada, ("MFT Pond Sample") was provided from Canada. Generally, mature fine tailings consist of an emulsion of solids (*e.g.*, sand and clay), bitumen and water and while varying in age can be several decades old (*e.g.*, 10 years, 20 years, 30 years, 40 years). The MFT Pond Sample contained approximately 30% solids (sand, clay and bitumen) and approximately 70% water and was thick, viscous and dark in color with a pungent odor (believed to be from the presence of anaerobic bacteria). Again, 210 g of the separating composition was utilized and this time mixed with 90 g of the MFT Pond Sample. Prior to mixing with the Canadian Oil Sands, the pH of the separating composition was adjusted to 7.8 using phosphoric acid. Inventor: Yeggy, et al. [0065] The mixture of the separating composition and Canadian Oil Sands was placed into a Mason jar. The samples were heated to 140°C using a microwave oven. After heating, in order to disperse the mixture, a 10,000 rpm high speed disperser with 1" blade was utilized. A Premier Mill, Series 2000, Model 2000, 110 V, 1 horsepower, 12 amp bench top disperser was utilized as the high speed disperser. The disperser was utilized for approximately 3 minutes. [0066] Thereafter, as the sample sat in place the constituents settled and distinct layers began to form within about 15 minutes. Within a half hour three distinct layers had formed with bitumen in the top layer, the used separating
composition in the second layer, and solids (e.g., sand and clay) in the third layer. Complete settling of the solids (and separation into distinct layers) took relatively longer than in Examples 4 and 5 due to the amount of solids (e.g., clay) present in the MFT Pond Sample. After the Mason Jar contents had cooled and the three distinct layers had formed (approximately 12 hours), the bitumen was removed from the Mason Jar by use of a spoon (although other physical separation means such as decanting or the use of a syringe or other suction device could also be utilized. The bitumen was determined to be greater than 99% free of contaminants, including sand and clay. Approximately 2.8g of bitumen was recovered, representing greater than 99% of all of the available bitumen in the sample of Canadian Oil Sands. The amount of bitumen recover represented approximately 3% of the weight of the MFT Pond Sample or approximately 10% of the weight of the solids present in the MFT Pond Sample. [0068] Unless specifically stated to the contrary, the numerical parameters set forth in the specification, including the attached claims, are approximations that may vary depending Inventor: Yeggy, et al. on the desired properties sought to be obtained according to the exemplary embodiments. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. [0069] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. [0070] Furthermore, while the systems, methods, and so on have been illustrated by describing examples, and while the examples have been described in considerable detail, it is not the intention of the applicant to restrict, or in any way, limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the systems, methods, and so on provided herein. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept. Thus, this application is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims. The preceding description is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined by the appended claims and their equivalents. Inventor: Yeggy, et al. [0071] Finally, to the extent that the term "includes" or "including" is employed in the detailed description or the claims, it is intended to be inclusive in a manner similar to the term "comprising," as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term "or" is employed in the claims (e.g., A or B) it is intended to mean "A or B or both." When the applicants intend to indicate "only A or B, but not both," then the term "only A or B but not both" will be employed. Similarly, when the applicants intend to indicate "one and only one" of A, B, or C, the applicants will employ the phrase "one and only one." Thus, use of the term "or" herein is the inclusive, and not the exclusive use. See Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Inventor: Yeggy, et al. What is claimed is: 1. A composition, comprising: a separating composition, comprising: a hydrotropic agent; and a dispersant having flocculating characteristics; wherein the separating composition has a pH of greater than about 7.5. 2. The composition of claim 1, wherein the hydrotropic agent is present in the amount of from 0.1% to 4% by weight of the separating composition; and the dispersant having flocculating characteristics is present in the amount of from about 0.25% to about 4.5% by weight of the separating composition. 3. The composition of claim 1, further comprising a wetting agent. 4. The composition of claim 3, wherein the wetting agent comprises 2,5,8,11-tetramethyl-6- dodecyn-5,8-diol ethoxylate. 5. The composition of claim 1, wherein the hydrotropic agent comprises a phosphorylated nonionic surfactant. 6. The composition of claim 1, wherein the hydrotropic agent comprises an aromatic phosphate ester having the formula: - 28 - Inventor: Yeggy, et al. $$R^1$$ O D PO_3K_3 wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n = 1 to 8. - 7. The composition of claim 1, wherein the dispersant having flocculating characteristics comprises a pyrophosphate salt. - 8. The composition of claim 1, wherein the dispersant having flocculating characteristics comprises one or more of sodium acid pyrophosphate and tetrapotassium pyrophosphate. - 9. The composition of claim 1, wherein the pH of the separating composition is from about 7.6 to about 8.5. - 10. The composition of claim 1, further comprising a strong base. - 11. The composition of claim 1, wherein the composition is essentially free of organic solvent. - 12. The composition of claim 1, further comprising hydrocarbon containing materials, wherein the ratio of the separating composition to the hydrocarbon containing materials is from about 2:3 to about 3:2. - 13. A separating composition, comprising: from about 0.1% to about 4% by weight of a hydrotropic agent; and Inventor: Yeggy, et al. from about 0.25% to about 4.5% by weight of a dispersant having flocculating characteristics. with the caveat that the separating composition does not include a wetting agent. . - 14. The separating composition of claim 13, wherein the separating composition has a pH of from about 7 to about 8.5. - 15. The separating composition of claim 13, further comprising a heavy acid, wherein the heavy acid is present in the amount of from about 1.7% to about 8.6% by weight. - 16. A separating composition for separating bitumen from oil sands or tailings, comprising: from about 0.1% to about 4% by weight of an aromatic phosphate ester having the formula: $$R^1$$ O n PO_3K_2 wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n = 1 to 8; up to about 4.5% by weight of sodium pyrophosphate; up to about 4.5% by weight of tetrapotassium pyrophosphate; from about 2% to about 9.5% by weight of sodium hydroxide; and from about 1.7% to about 8.6% by weight of phosphoric acid. 17. The separating composition of claim 16, wherein the separating composition is essentially free of organic solvent. Inventor: Yeggy, et al. 18. A method for separating bitumen from oil sands, comprising: contacting a separating composition comprising a hydrotropic agent and a dispersant having flocculating characteristics with oil sands comprising bitumen and sand; heating the separating composition and the oil sands; subjecting the separating composition and the oil sands to high sheer; and recovering the bitumen and sand as separate products. 19. The method of claim 18, wherein the separating composition is comprised of: from about 0.1% to about 4% by weight of a hydrotropic agent; and from about 0.25% to about 4.5% by weight of a dispersant having flocculating characteristics. 20. The method of claim 18, wherein the separating composition is comprised of: from about 0.1% to about 4% by weight of an aromatic phosphate ester having the formula: wherein R^1 is a C_1 - C_5 linear or branched alkyl group and n=1 to 8; up to about 4.5% by weight of sodium pyrophosphate; up to about 4.5% by weight of tetrapotassium pyrophosphate; from about 2% to about 9.5% by weight of sodium hydroxide; and from about 1.7% to about 8.6% by weight of phosphoric acid. Inventor: Yeggy, et al. **Abstract** # **SEPARATING COMPOSITIONS AND METHODS OF USE** Compositions and methods are provided for separating bitumen from oil sands in an efficient and environmentally acceptable manner, and for recovering residual bitumen from existing tailings ponds. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Amali | Application Data Sheet 37 CFR 1.7 | | | 1 76 | Attorney Docket Number | | | 29790-16 | | | | | | |----------|---|-------------------------|-------------------|---------|------------------------|--------------------|------------------|----------|------------|---------|--------------|---|----------| | Appli | | | | 1.70 | Applica | Application Number | | | | | | | | | Title of | Title of Invention SEPARATING COMPOSITIONS AND METHODS OF USE | | | | | | | | | | | | | | The app | The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the | | | | | | | | | | | | | | This do | bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76. This document may be completed electronically and submitted to the Office in electronic format using the
Electronic Filing System (EFS) or the document may be printed and included in a paper filed application. | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | CFR | • | | Secrecy Order pur
 electronically.) | suant to | | Appli | cant I | nform | ation: | | | | | | | | | | | | Applic | ant 1 | | | | | | | | | | | | | | | | hority 🧿 |)Inventor | OLe | egal Rep | resentative | e under | r 35 l | J.S.C. 117 | 7 | OParty of Ir | nterest under 35 U.S | .C. 118 | | Prefix | | | | ı | М | iddle Nan | ne | | | Fam | ily Name | | Suffix | | Mr. | Robert | | | | C. | | | | | Yegg | у | | | | Resid | lence In | formatio | n (Select | One) | ① US | Residency | <u> </u> |) No | n US Res | sidency | / Activ | e US Military Service | 9 | | City | Mainev | ille | | | State/ | Province | OF | 1 | Country | y of R | esidencė | us | | | Citizer | nship ur | nder 37 (| CFR 1.41(| b) | US | | | | | | | | | | Mailin | g Addre | ss of Ap | plicant: | 1 | | | | | | | | | | | Addre | ss 1 | | 5765 So | uth Sta | te Route | e 48 | | | | | | | | | Addre | ss 2 | | Suite 11 | 0-161 | | | | | | | | | | | City | Ма | ineville | | | | | | State | e/Provin | се | ОН | | | | Postal | l Code | | 45039 | | | | Coun | ntry | US | | 1 | | | | Applic | ant 2 | | | | | | | | | | | | | | | | hority 🧿 |)Inventor | OLe | egal Rep | resentative | e under | r 35 L | J.S.C. 117 | 7 | OParty of Ir | nterest under 35 U.S | .C. 118 | | | Given | | | l | М | iddle Nan | Name Family Name | | | | Suffix | | | | Mr. | Vita | | | | J. | | | | | Altav | illa | | | | Resid | lence In | formatio | n (Select | One) | ① US | Residency | y C |) No | n US Res | sidency | / Activ | e US Military Service | e
e | | City | Cincinn | ati | | | State/ | Province | OF | 1 | Country | y of R | esidence | US | | | Citizer | nship ur | nder 37 (| CFR 1.41(| b) | US | | | | | | | | | | Mailin | g Addre | ss of Ap | plicant: | I | | | | | | | | | | | Addre | ddress 1 2183 Springer Avenue | | | | | | | | | | | | | | Addre | Address 2 | | | | | | | | | | | | | | City | Cir | cinnati | State/Province OH | | | | | | | | | | | | Postal | l Code | 45208 Country US | | | | | | | | | | | | | | All Inventors Must Be Listed - Additional Inventor Information blocks may be generated within this form by selecting the Add button. | | | | | | | | | | | | | | Corre | Correspondence Information: | | | | | | | | | | | | | | Enter | Enter either Customer Number or complete the Correspondence Information section below. For further information see 37 CFR 1.33(a). | s applicatio | | | Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Application Data Sheet 37 CFR 1.76 | | Attorney Docket Number | | 29790-16 | | | | |--|--------------------------|---|--------------------------------------|------------------|---|--|--| | Application ba | ta Sile | et 37 CFK 1.70 | Application Number | | | | | | Title of Invention | SEPAR | RATING COMPOSITIC | TING COMPOSITIONS AND METHODS OF USE | | | | | | Customer Numbe | Customer Number 21130 | | | | | | | | Email Address | | patents@beneschlav | w.com | | Add Email Remove Email | | | | Application In | Application Information: | | | | | | | | Title of the Invent | ion | SEPARATING COM | POSITIONS AN | D METHODS C | DF USE | | | | Attorney Docket N | lumber | 29790-16 | | Small En | tity Status Claimed 🔀 | | | | Application Type | | Nonprovisional | | | | | | | Subject Matter | | Utility | | | | | | | Suggested Class | (if any) | | | Sub Clas | s (if any) | | | | Suggested Techn | ology C | enter (if any) | | | | | | | Total Number of D | rawing | Sheets (if any) | | Suggeste | ed Figure for Publication (if any) | | | | Publication I | nform | nation: | | | | | | | Request Early | Publica | ition (Fee required a | t time of Requ | est 37 CFR 1.2 | 219) | | | | C. 122(b) and | certify filed in | that the invention dis
another country, or เ | sclosed in the | attached applic | I application not be published under 35 U.S. cation has not and will not be the subject of onal agreement, that requires publication at | | | | Representative Information: Representative information should be provided for all practitioners having a power of attorney in the application. Providing this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32). Enter either Customer Number or complete the Representative Name section below. If both sections | | | | | | | | | are completed the Customer Number will be used for the Representative Information during processing. | | | | | | | | | Please Select One Customer Number | | Customer Numbe | r O us P | atent Practition | er Limited Recognition (37 CFR 11.9) | | | | Customer Number | | 21130 | | | | | | | | or the app | olicant to either claim b | enefit under 35 | U.S.C. 119(e), ′ | 120, 121, or 365(c) or indicate National Stage | | | entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required 35 U.S.C. 119(e) or 120, and 37 CFR 1.78(a)(2) or CFR 1.78(a)(4), and need not otherwise be made part of the specification. | Prior Application Status | Pending | | Remove | | | | |---|-------------------------|--------------------------|--------------------------|--|--|--| | Application Number | Continuity Type | Prior Application Number | Filing Date (YYYY-MM-DD) | | | | | | Continuation in part of | 11868031 | 2007-10-05 | | | | | Additional Demostic Panelit/National Stage Date may be generated within this form | | | | | | | Additional Domestic Benefit/National Stage Data may be generated within this form by selecting the Add button. # **Foreign Priority Information:** U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Application Data Sheet 37 CFR 1.76 | | | Attorney D | ocket Number | 29790-16 | | | | | |------------------------------------|---|---|--------------------------------------|---------------------|-----------|------------------|---------------|---------|-----| | | | | Application | Number | | | | | | | Title of Invention | on SEPAF | RATING COMPOSITIO | TING COMPOSITIONS AND METHODS OF USE | | | | | | | | not claimed. Pro | This section allows for the applicant to claim benefit of foreign priority and to identify any prior foreign application for which priority is not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b) and 37 CFR 1.55(a). | | | | | | | | | | | | | · | | | R | emove | | | | Application | Number | Country | y ^l | Parent Filing D | ate (YY | YY-MM-DD) | Priority | / Clai | med | | | | | | | | | O Yes | • | No | | Additional Fore | eign Priority | Data may be genera | ated within th | nis form by selec | ting the | | | | | | Assignee I | nformati | on: | | | | | | | | | | | ne application data she
ment recorded in the O | | bstitute for compli | ance with | n any requiremen | t of part 3 o | f Title | 37 | | | e is an Orgar | nization check here. | \square | | | | | | | | Organization N | Name VA | RY Petrochem, LLC | | | | | | | | | Mailing Addre | | | | | | | | | | | Address 1 | | 8500 Clinton Road | | | | | | | | | Address 2 | | | | | | | | | | | City | | Brooklyn | | State/Provin | nce | ОН | | | | | Country US | | | | Postal Code | | 44144 | | | | | Phone Number | | | | Fax Number | | | | | | | Email Address | | | | | | | | | | | Additional Ass button. | Additional Assignee Data may be generated within this form by selecting the Add button. | | | | | | | | | # Signature: | 1 ~ | A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37 CFR 1.4(d) for the form of the signature. | | | | | | | |------------|--|--|----------|---------------------|------------|--|--| | Signature | /Thomas Y. Kendrick/ | | | Date (YYYY-MM-DD) | 2009-09-10 | | | | First Name | Thomas Last Name Kendrick | | Kendrick | Registration Number | 61516 | | | This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of
time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. **SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.** Approved for use through 06/30/2010. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. # DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN **APPLICATION DATA SHEET (37 CFR 1.76)** | Title of
Invention | Separating | Compositions and Methods of Use | } | | | | |--|--|--|--|--|--|--| | As the belo | w named invent | or(s), I/we declare that: | | | | | | This declar | ation is directed | to: | | | | | | | \boxtimes | The attached application, or | | | | | | | | Application Nofile | | | | | | | | As amended on | (if applicable); | | | | | I/we believe
sought; | e that I/we am/a | re the original and first inventor(s) of the sub | oject matter which is claimed and for which a patent is | | | | | I/we have r
amendmen | reviewed and un
it specifically refe | derstand the contents of the above-identified
erred to above; | application, including the claims, as amended by any | | | | | material to
became av | patentability as | defined in 37 CFR 1.56, including for conting the filing date of the prior application and | Trademark Office all information known to me/us to be nuation-in-part applications, material information which if the national or PCT International filing date of the | | | | | contribute to numbers (of the USPTO, per to the USPTO of the applic of a patent, referenced PTO-2038 statement believed to | Petitioner/applicant is cautioned to avoid submitting personal information in documents filed in a patent application that may contribute to identity theft. Personal information such as social security numbers, bank account numbers, or credit card numbers (other than a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO to support a petition or an application. If this type of personal information is included in documents submitted to the USPTO, petitioners/applicants should consider redacting such personal information from the documents before submitting them to the USPTO. Petitioner/applicant is advised that the record of a patent application is available to the public after publication of the application (unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance of a patent. Furthermore, the record from an abandoned application may also be available to the public if the application is referenced in a published application or an issued patent (see 37 CFR 1.14). Checks and credit card authorization forms PTO-2038 submitted for payment purposes are not retained in the application file and therefore are not publicly available. All statements made herein of my/our own knowledge are true, all statements made herein on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like | | | | | | | patent issuir | are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001, and may jeopardize the validity of the application or any patent issuing thereon. | | | | | | | | E OF INVENTO | | | | | | | Inventor one | e: Robert C. Ye | 3ggy/ | Date: 9-09-09 | | | | | Signature: | <u> </u> | M Lagger | Citizen of: United States | | | | | Inventor two | vito J. Altavi | ila Allej Allej | Date: 9-09-09 | | | | | Signature: 2 | 28/ | Milleria | Citizen of: United States | | | | | Additio | nal inventors or a | legal representative are being named on | additional form(s) attached hereto. | | | | This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.63. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 1 minute to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. | Electronic Ac | Electronic Acknowledgement Receipt | | | | | |--------------------------------------|--|--|--|--|--| | EFS ID: | 6046588 | | | | | | Application Number: | 12556878 | | | | | | International Application Number: | | | | | | | Confirmation Number: | 3398 | | | | | | Title of Invention: | SEPARATING COMPOSITIONS AND METHODS OF USE | | | | | | First Named Inventor/Applicant Name: | Robert C. Yeggy | | | | | | Customer Number: | 21130 | | | | | | Filer: | Thomas Y. Kendrick/Christine Dickerson | | | | | | Filer Authorized By: | Thomas Y. Kendrick | | | | | | Attorney Docket Number: | 29790-16 | | | | | | Receipt Date: | 10-SEP-2009 | | | | | | Filing Date: | | | | | | | Time Stamp: | 14:29:27 | | | | | | Application Type: | Utility under 35 USC 111(a) | | | | | | Payment information: | | | | | | ### Payment information: | Submitted with Payment | yes | |--|-------------| | Payment Type | Credit Card | | Payment was successfully received in RAM | \$572 | | RAM confirmation Number | 647 | | Deposit Account | | | Authorized User | | # File Listing: | Document | Document Description | File Name | File Size(Bytes)/ | Multi | Pages | |----------|----------------------|-----------|-------------------|------------|------------| | Number | | | Message Digest | Part /.zip | (if appl.) | | | | | · | | | |------------------|--|--|--|---------------|---------------| | 1 | Miscellaneous Incoming Letter | 09-0910-29790-16-
CertificateOfElectronicFiling.
pdf | 22806
6c5ddb0300dbc1818710f97d51eb95e3ed3 | no | 1 | | Warnings: | | | | | I | | Information: | | | | | | | 2 | Specification | 09-0910-29790-16-
Specification And Title Page.pdf | 359910 | no | 27 | | | | | b55ef5815b78825319d4e57af704873d17f9
ef68 | | | | Warnings: | | | | | | | Information: | | | <u> </u> | | | | 3 | Claims | 09-0910-29790-16-Claims.pdf | 49370 | no | 4 | | | | | cfc49d83683f80847143b092f110815dea70
7618 |) | | | Warnings: | | | | | | | Information: | | | | | | | 4 | Abstract | 09-0910-29790-16-Abstract.pdf | 11892 | no | 1 | | | | | ecc57eb28a075a6279d0264824b127fdd33
f81fe | | | | Warnings: | | | | | | | Information: | | | | | _ | | 5 | Application Data Sheet | 09-0910-29790-16- | 44389 | no | 3 | | J | | ApplicationDataSheet.pdf | 21000b9fdc90d6add3d97315fb00f731f961
801a | | | | Warnings: | | | | | - | | Information: | : | | | | | | This is not an U | ISPTO supplied ADS fillable form | | | | | | | | | 106931 | | | | 6 | Oath or Declaration filed | 09-0910-29790-16-
Inventor Declaration.pdf | 80e2d82d8d485572a46aa13a958ffdefef5a
449c | no | 1 | | Warnings: | | <u> </u> | 1100 | | 1 | | The page size i | n the PDF is too large. The pages should be
pper and may affect subsequent processing | | tted, the pages will be re | sized upon er | ntry into the | | Information: | | | | | | | 7 | Fee Worksheet (PTO-875) | fee-info.pdf | 36613 | no | 2 | | 7 | i ee worksneet
(F10-6/3) | ιεε-ππο.ραι | 598339d389bf45c9c8453b3495f65dacd84
81771 | | | | Warnings: | | | | | | | | | | | | | | Information: | • | | | | | This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. #### New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. #### National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. ### New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.